Chapitre n° 14 : Fonction linéaire et fonction affine

I Fonction linéaire

1 Définition

Définition: Fonction linéaire

Soit *a* un nombre fixé.

La fonction linéaire de coefficient a est la fonction f qui a tout nombre x associe le nombre ax.

$$f: x \longmapsto ax$$

a est appelé coefficient de linéarité.

Exemples

- $f: x \longmapsto 5x$ est une fonction linéaire de coefficient
- $g: x \mapsto \frac{-4}{7}x$ est une fonction linéaire de coefficient
- $f: x \mapsto 12x + 4$ n'est **pas** une fonction linéaire.

2 IMAGE ET ANTÉCÉDENT

Propriété.

Soit f une fonction linéaire de coefficient a alors : f(1) = a

Exemple

Soit h la fonction définie par $h: x \longmapsto 12x$.

Déterminer l'antécédent de 30 par la fonction h.

Tableau de valeurs

Complétons le tableau de valeurs de la fonction $f: x \longmapsto 3x$.

x	-5	-2	0	1	4	7
f(x)						

À toute situation de proportionnalité, on peut associer une fonction linéaire (et inversement).

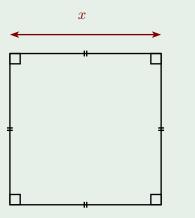
Exemple

Soit x un nombre positif.

Un carré de côté x cm a un périmètre de longueur 4x cm.

On peut modéliser cette situation avec la fonction

Il s'agit bien d'une situation de proportionnalité, si la longueur x double alors le périmètre double aussi.



3 Représentation graphique

Définition:

La représentation graphique de la fonction linéaire $x \mapsto ax$ est l'ensemble des points de coordonnées (x; ax).

Propriété.

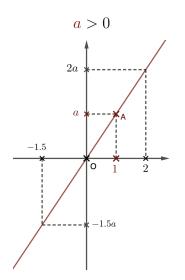
La représentation graphique de la fonction $x \mapsto ax$ est la droite (OA) où O est l'origine du repère et A le point de coordonnées (1; a).

REMARQUES

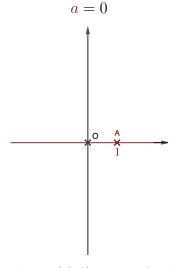
- Il suffit de 2 points pour tracer une droite : l'image de 0 est toujours 0 et celle de 1 est toujours a.
- Une situation de proportionnalité pouvant être associée à une fonction linéaire, on explique ainsi pourquoi la représentation graphique d'une situation de proportionnalité est une droite passant par l'origine.

Définition: Coefficient directeur

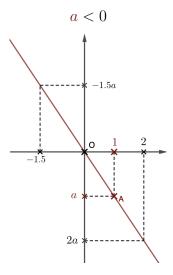
On dit que le nombre a est le coefficient directeur de la droite (OA).



La droite (OA) « monte ».



La droite (OA) est confondue avec l'axe des abscisses



La droite (OA) « descend ».

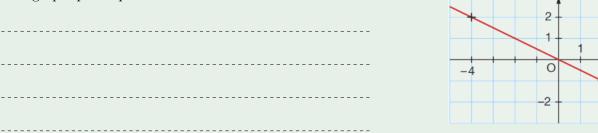
DÉTERMINER L'EXPRESSION D'UNE FONCTION LINÉAIRE

Exemples

• Déterminer l'expression de la fonction linéaire f telle que f(6) = 10, 8.

Déterminer l'expression de la fonction h représentée par la droite (d).

Sur le graphique on peut lire les coordonnées suivantes



Propriété.

Soit f une fonction linéaire alors pour tout nombre x non nul on a : $a = \frac{f(x)}{x}$

Exemples

On reprend les deux points de l'exemple précédent.

Fonction affine

DÉFINITION

Définition: Fonction affine

Soit a et b deux nombres fixés.

On appelle fonction affine toute fonction f qui à tout nombre x associe le nombre ax + b.

$$f: x \longmapsto \mathbf{a}x + \mathbf{b}$$

a est appelé coefficient directeur et b ordonnée à l'origine.

Exemples

- $f: x \longmapsto 7x + 12$ fonction affine de coefficient directeur _____ et d'ordonnée à l'origine _____.
- $g: x \longmapsto -5x 8$ fonction affine de coefficient directeur _____ et d'ordonnée à l'origine _____

REMARQUES

- Si b=0 alors on retrouve une fonction linéaire.

Les fonctions linéaires sont donc des cas particuliers de fonctions affines.

- Si a = 0 alors on retrouve une fonction constante.

- Si a = b = 0 alors on retrouve la fonction *nulle*.

2 Représentation graphique

Définition:

La représentation graphique de la fonction linéaire $x \mapsto ax + b$ est l'ensemble des points de coordonnées (x ; ax + b).

Propriété.

Soit f une fonction affine de coefficient directeur a et d'ordonnée à l'origine b.

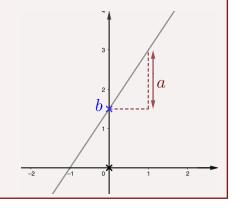
Alors: b est l'image de 0 par la fonction f.

<u>C'est-à-dire</u>: f(0) = b.

Propriété.

Si une fonction est affine, alors sa représentation graphique est une droite.

<u>Réciproquement</u>: Si la représentation graphique d'une fonction est une droite, alors cette fonction est affine.



Remarque

Comme pour une fonction linéaire, le coefficient directeur a nous dit de combien on monte (ou de combien on descend) à chaque fois que l'on se déplace d'une unité.

Propriété.

Soit f une fonction affine de coefficient directeur a et d'ordonnée à l'origine b.

Pour tous nombres x_1 et x_2 tels que $x_1 \neq x_2$ on a : $a = \frac{f(x_1) - f(x_2)}{x_1 - x_2}$

Démonstration.

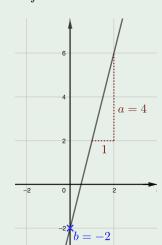
Remarque

Comme pour les fonctions linéaires, le coefficient a donne la direction de la droite (elle monte ou bien elle descend.

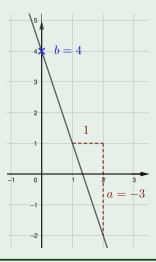
L'ordonnée à l'origine b indique que la droite coupe l'axe des ordonnées au point (0; b).

Exemple

$$f: x \longmapsto 4x - 2$$



$$f: x \longmapsto -3x+4$$



3 DÉTERMINER L'EXPRESSION D'UNE FONCTION LINÉAIRE

Exemple

Déterminer l'expression de la fonction f représentée ci-contre.

-	 	 -	 	 	-	-	-	_		 -	_	-	-	 	 	-	-	-	-	_	 	-	-	 	-	-	 	 -	 	-	_	-	 	 -	 	-
_	 	 -	 	 	-	-	-	_		 _	-	-	-	 	 		-	-	-		 		-	 		-	 	 _	 		_	_	 	 -	 	-
_	 	 _	 	 	_	_	_	_	_	 	_	_	_	 	 		_	_	_		 		_	 		_	 	 _			_	_	 	 _	 	_

Exemple

Soit g une fonction affine telle que g(-3) = -9 et g(4) = 5.

Déterminer l'expression de cette fonction.